
On the Separability of Structural Classes of Communities

Bruno Abrahao Sucheta Soundarajan John Hopcroft Robert Kleinberg

Department of Computer Science
Cornell University

Ithaca, NY, 14850, USA
{abrahao, sucheta, jeh, rdk}@cs.cornell.edu

ABSTRACT
Three major factors govern the intricacies of community ex-
traction in networks: (1) the application domain includes
a wide variety of networks of fundamentally different na-
tures, (2) the literature offers a multitude of disparate com-
munity detection algorithms, and (3) there is no consensus
characterizing how to discriminate communities from non-
communities. In this paper, we present a comprehensive
analysis of community properties through a class separabil-
ity framework. Our approach enables the assessement of
the structural dissimilarity among the output of multiple
community detection algorithms and between the output of
algorithms and communities that arise in practice. To de-
mostrate this concept, we furnish our method with a large
set of structural properties and multiple community detec-
tion algorithms. Applied to a diverse collection of large scale
network datasets, the analysis reveals that (1) the different
detection algorithms extract fundamentally different struc-
tures; (2) the structure of communities that arise in practice
is closest to that of communities that random-walk-based al-
gorithms extract, although still siginificantly different from
that of the output of all the algorithms; and (3) a small
subset of the properties are nearly as discriminative as the
full set, while making explicit the ways in which the algo-
rithms produce biases. Our framework enables an informed
choice of the most suitable community detection method for
a given purpose and network and allows for a comparison of
existing community detection algorithms while guiding the
design of new ones.

Categories and Subject Descriptors
I.5.1 [Computing Methodology]: Pattern Recognition —
Design Methodology

Keywords
Networks, Community Structure, Detection Algorithms, Class
Separability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$10.00.

1. INTRODUCTION
Community structure captures the tendency of entities

in a network to group together in meaningful subsets whose
members have a distinctive relationship to one another. The
identification of these subsets allows for the analysis of net-
works at different levels of detail, which is instrumental in
illuminating the structure underlying large-scale systems [5,
9, 10, 22, 23].

Despite playing a fundamental role in the structure and
function of networks, community structure has proved to be
frustratingly difficult to define, quantify, and extract. In
addition to challenges related to computational tractability,
three major factors account for the intricacies of commu-
nity extraction. First, the application domain includes a
wide variety of networks of fundamentally different natures.
Each of these networks possesses meaningful communities
that may possess their own distinctive structural profiles.
Second, the literature offers a multitude of disparate com-
munity detection algorithms. Due to differences in concept
and design, the output of these procedures exhibits high
structural variability across the collection. Last, there is
no established consensus on the question of what properties
distinguish subgraphs that are communities from those that
are not communities.

In this paper, we tackle these challenges through a com-
prehensive analysis of community properties. We present a
framework that enables researchers and practitioners to as-
sess the structural dissimilarity among the output of multi-
ple community detection algorithms and between the output
of algorithms and communities that arise in practice. Our
approach analyzes communities by taking account of a broad
spectrum of structural properties. The analysis reveals nu-
ances of the structure of real and extracted communities.

We frame our approach as a class separability problem,
which simultaneously handles many classes of communities
and a diverse set of structural properties. To this end, we
specify a learning problem in which we map the distinct
communities into a feature space, where the dimensions rep-
resent measures that characterize a community’s link struc-
ture. The separability of classes provides information on
the extent to which different communities come from the
same (or fundamentally different) distributions of feature
values. We extract different classes of communities that
can be grouped into two categories: intrinsically-defined and
extrinsically-defined communities.

We define the first set of communities by properties in-
trinsic to their link structure. For our purposes, these are
the sets that community detection algorithms may output.

Each class of intrinsically defined communities comprises a
set of examples that a specific algorithm extracts. The sep-
arability of these classes demonstrates the extent to which
different algorithms output structurally distinguishable sub-
graphs. A feature selection analysis can then be employed
to highlight the properties that exhibit the highest degree of
inter-class variability, thereby making explicit the structural
bias produced by different algorithms.

We also define communities by the context, the dynam-
ics, or the function associated with the networks, but ex-
trinsic to the link structure. We identify these communities
through meaningful annotations provided with the datasets,
such as explicit declaration of membership, product cate-
gories, grouping by protein function, and so on. In this
fashion, for each network, we form a class of extrinsically-
defined communities, henceforth called annotated communi-
ties. These communities enable a large-scale rigorous anal-
ysis of community detection methods. The separability of
the class comprising annotated communities from the classes
of intrinsically-defined communities determines the extent to
which community detection algorithms succeed in extracting
subgraphs that are structurally comparable to the communi-
ties formed by nodes sharing extrinsic properties in common.

To demonstrate our approach, we furnish our framework
with a large set of structural properties and ten different
community detection procedures to produce examples of dif-
ferent structural classes. Our selection is representative of
categories of popular algorithms available in the literature.
We consider a diverse collection of large scale real networks
whose domains span biology, on-line shopping, and social
systems. Assessing separability using supervised classifiers
both parametric, namely Support Vector Machines [30], and
nonparametric, namely k-Nearest Neighbors [1], together
with a feature selection analysis using correlation-based meth-
ods [11], we reach the following conclusions about the com-
munities in question. First, for all networks, the strong cross
validation performance indicates that the different commu-
nity detection algorithms produce fundamentally different
structures that are separable on the feature space defined.
Second, we observe that in nearly all cases, the annotated
communities are structurally distinguishable from the out-
put of all community detection algorithms. Nevertheless,
the communities bearing the closest structural resemblance
to annotated communities are those that random-walk-based
algorithms extract. Surprisingly, in spite of the diversity of
the domains from which our networks are drawn, this obser-
vation applies to all of the networks, except to two of them
for which we have a small population size. Finally, a small
subset of the features is consistently observed as the most
discriminative. This observation allows for a dimensionality
reduction by a factor as large as 4, preserving an equivalent
10-fold cross validation performance. The most discrimina-
tive features identify the ways in which the different algo-
rithms produce biases. As illustrated by our experiments,
by producing artificial or real examples of communities that
possess the structure we wish to find, we can use our frame-
work to enable an informed choice of the most suitable com-
munity detection method for a given network. In addition,
it allows for a comparison of existing community detection
algorithms and may guide the design of new ones.

This paper is organized as follows. Section 2 discusses
background information and related work. Section 3 intro-
duces the datasets we use, the algorithms we consider, and

the measures we apply to construct the feature space. Sec-
tion 4 describes the heart of our framework and presents
an experimental analysis thereof. Next, this section closes
with a feature selection analysis. Finally, Section 5 offers
our concluding remarks.

2. BACKGROUND AND RELATED WORK
The work by Girvan and Newman [10] has recently sparked

a wave of interest in the notion of community structure as a
decomposition of a network that reflects meaningful proper-
ties of the underlying system [9]. Nevertheless, this area has
its roots in the related problem of graph partitioning whose
initial contributions date back to the 1970s [14].

Given the diverse nature of networks, the notion of mean-
ingful communities is necessarily context dependent, involv-
ing interpretations and expectations of domain experts. There-
fore, many attempts to define communities are grounded on
the notion of mathematical optimization. Starting with an
a priori expectation about what a community should look
like, researchers specify an objective function for a search
method, whose solution for a given instance provides the de-
sired communities. This process has given rise to a a large
collection of community detection algorithms, which aim at
optimizing various objective functions. As mentioned in the
previous section, the multitude of community structure def-
initions represents a source of high variability between the
output of different community detection algorithms.

Among the objective functions introduced in previous work,
the notion of modularity [10] has become an influential one.
Modularity assigns high scores to communities whose inter-
nal edges outnumber the ones established in expectation by
a random-network model that preserves the degree distri-
bution of the original network. A related notion inspired
by electrical networks is that of conductance [5]. The con-
ductance of a set S with complement SC is the ratio of the
number of edges connecting nodes in S to nodes in SC by
the total number of edges incident to S or to SC (whichever
number is smaller). The common theme underlying the pre-
ceding notions is the search for node sets that are internally
cohesive and yet sparsely connected to the rest of the net-
work. Therefore, these measures tend to penalize sets having
a large number of edges crossing the set relative to the count
of internal edges.

Communities in general, however, display features that
modularity and conductance may not capture, such as a
preponderance of links to the outside over internal links
and an arbitrary degree of overlap. This fact is substanti-
ated by an investigation of real networks revealing that they
do not split well into low-conductance communities [17] as
most networks are expander-like [12]. These considerations
lead to the development of alternative definitions, such as
(α, β)-community [20], and algorithms, such as Link Com-
munities [2] and Clique Percolation [24].

Communities in real networks often emerge as a result of
multiple driving forces that make up the underlying com-
plex system. Therefore, the attempt to capture community
structure by maximizing a given objective function may rep-
resent an unrealistic expectation. As a consequence, commu-
nities identified by methods that reflect mathematical con-
structs may differ structurally from real communities that
arise in practice. Despite the vast literature on commu-
nity detection, the work by Ahn et al. [2], as well as ours,
are among the few that attempt to analyze the structural

resemblance between communities extracted by algorithms
and annotated communities, which represent examples of
meaningful communities in various domains.

Even though network analysts expect the outputs of the
different algorithms to display dissimilar structural profiles
due their conceptual diversity, the structural variability does
not hinge simply on the choice of optimization problem. In
most cases of interest, the search for a collection of node
sets that maximize a given objective function is computa-
tionally intractable [9]. Therefore, in an attempt to handle
the massive scale of today’s networks, popular methods of
community detection rely on efficient heuristics. As a con-
sequence, previous work have quantified a significant output
variability among different approximation algorithms that
aim at maximizing the exact same function [15, 18].

In the spirit of studying the structural variability exhib-
ited by different algorithms, closest to ours is the work by
Leskovec et al. [17], which discusses properties of communi-
ties produced by multiple algorithms that aim at maximizing
conductance. They consider the values of a handful of fea-
tures, e.g., set compactness and internal conductance, pro-
duced by different algorithms. In contrast, here we present
the first study that is simultaneously comprehensive with
respect to the diversity of structural properties, of domains,
of algorithms, and of scale. We take account of a set of 36
features, measured from the output produced by 10 different
community detection processes, which are representative of
classes of available algorithms that aim at maximizing vari-
ous different objective functions in the literature. We derive
our results from a diverse collection of datasets from large-
scale networks arising from multiple domains.

3. BUILDING STRUCTURAL CLASSES
Before describing our framework and delving into our anal-

ysis, in this section we present the datasets we use, as well
as our methodology for building structural classes of com-
munities from the network data. We also define the feature
space for our learning problem.

3.1 Datasets
We analyze eight large scale datasets, namely DBLP, Live-

Journal, two portions of the Facebook network (denoted by
Facebook — Rice University Undergraduate and Graduate),
Amazon, and three biological networks denoted by HS, SC,
and Fly. The collection encompasses different forms of enti-
ties and relationships and originate from diverse domains.

The LiveJournal dataset consists of a snapshot of a large
network of bloggers, previously explored in [3]. The snap-
shot includes 4,847,571 bloggers who explicitly declare their
friendship links. Due to the massive size of this dataset, we
consider two portions of it, which we obtain by starting at
a random node and performing a breadth-first search from
that node. The datasets, henceforth named LJ1 and LJ2,
contain 500,000 nodes each. LJ1 and LJ2 contain 10,736,588
and 10,640,429 edges, respectively.

DBLP data is publicly collectible and our dataset consists
of a snapshot taken in May 2009 of the on-line publications
database site DBLP. The data include a collection of edi-
tions of publication venues (i.e., conferences and journals)
in computer science. A pair of the 744,386 authors present
in the dataset are linked if they have co-authored at least
one paper in any of the venues.

Facebook — Rice University Undergraduate (Ugrad) and

Graduate (Grad) are an anonymized portion of the Facebook
network which include Rice University students, collected by
crawling public friends lists on Facebook on May 17, 2008.
They consist of two disjoint sets of 1220 undergraduate stu-
dents and 503 graduate students, respectively. Mislove et
al. [21] present a detailed description of these datasets.

The Amazon dataset [16] is a product co-purchasing net-
work from the on-line retailer Amazon.com. Each node rep-
resents a book, and an edge exists between two nodes if one
was frequently purchased with the other. The network con-
tains 270,347 nodes and 741,142 edges. For each book, Ama-
zon.com reports up to 5 other items that were frequently
purchased with the book.

Biological networks HS, SC, and Fly describe protein-
protein interactions for H. Sapiens (human), S. Cerevisiae
(a type of yeast), and Drosophila (a fruit fly species) [25],
respectively. In these networks, a node represents a protein,
and two nodes are connected if scientific evidence of their in-
teraction exists. HS contains 10,298 nodes and 54,655 edges,
SC contains 5523 nodes and 82,656 edges, and Fly contains
15,326 nodes and 486,970 edges.

3.1.1 Annotated communities
The networks we analyze contain annotations reflecting

examples of communities that arise in these domains1. Some
of these sets are user-defined, i.e., users explicitly declare
their participation in the community, while others reflect
contextual information of the underlying process or organi-
zation, e.g., department, protein function, product category,
etc.. Below we describe how we identify and clean the an-
notated communities for each dataset.

For the social networks, in LiveJournal, users explicitly
declare their membership in zero or more communities cre-
ated and administered by users. In DBLP, conferences where
authors publish their research work reflect the community
memberships. Finally, for Facebook — Rice University Un-
dergraduate and Graduate, users who possess common aca-
demic attributes, such as department, major, or dormitory,
form the communities. These attributes were obtained by
matching Facebook names with student records from the
university’s directory [21].

For each item in Amazon.com, the on-line store provides
several product categories, such as “Photo Essays” or “Land-
scape Architecture Textbooks”. We identify a set of nodes
possessing a common categorical label as a community.

For HS, SC, and Fly, a number of proteins (though not all)
have annotations regarding one or more gene ontology IDs
describing the known functions that the protein serves (e.g.,
metabolic regulation). We use these gene ontology values to
identify the communities.

Since we define annotated communities extrinsically to the
link structure, the sets formed by the preceding definitions
may induce disconnected graphs. However, it is reasonable
to limit the definition of community to include only con-
nected subgraphs of the network. Therefore, to capture the
community information implicit in the annotations, we con-
sider each connected component of the graph induced by a
node set possessing a common label as an annotated com-
munity by itself. Moreover, since we are interested in the

1These communities, however, may not represent an unbi-
ased sample of communities in these networks as other com-
munities that are not annotated might also exist.

structure of reasonably sized communities, we filtered out
small communities with less than 10 members.

Overall, we identified 29,955 annotated communities for
LJ1, 39,598 for LJ2, 10,595 for DBLP, 24 for RICE-grad,
and 41 for RICE-ugrad, 9439 for Amazon, 64 for HS, 76 for
SC, and 54 for Fly.

3.2 Structural classes and feature space
In this section we describe how to produce examples that

constitute the structural classes and how to build the fea-
ture space for our learning framework. The process consists
of two steps. First, we produce the examples by applying
community detection algorithms, one for each class, to the
network data. Second, we extract features by measuring a
broad spectrum of properties of the subgraphs induced by
communities. This latter step uses a set of examples consist-
ing of the output produced in the previous step along with
the set of annotated communities.

3.2.1 Producing the examples
To study classes of intrinsically defined communities, we

selected a collection of 10 community detection procedures,
which are representative of strategies employed by a broad
range of algorithms in the literature. We applied these pro-
cedures to each of the nine network datasets to extract ex-
amples of subgraphs produced by these methods. We labeled
examples with the identity of the community detection pro-
cedure that produced them. In total, for each network, we
created 11 structural classes of communities: one class of
extrinsically-defined communities, which comprises exam-
ples of annotated communities, and each of the other 10
classes corresponding to intrinsically-defined communities,
which comprise examples extracted by each of the 10 com-
munity detection algorithms respectively. Below we briefly
describe the community detection procedures we consider.

1. Breadth First Search (BFS): To establish a base-
line, we use breadth first search to extract sets that
serve as examples of random connected communities.
To create one BFS community of size k, we begin with
a randomly selected node and perform a breadth first
search from that node until we visit k elements.

2. Random Walk 0 (RW0): The central idea in many
community detection algorithms is that random walks
tend to concentrate within a community [26, 31]. To
create communities of size k, we begin with a random
node and perform a uniform–random walk from that
node until k different nodes are visited.

3. Random Walk 0.15 (RW15): This is similar to the
preceding method with the twist that at each step we
restart the walk from the starting node with 0.15 prob-
ability. RW15 concentrates the random walk distribu-
tion around a center, thereby forming more compact
sets, whereas RW0 communities tend to spread out.

4. (α, β) (AB): An (α, β)-community, for α < β, requires
every member of the community to be connected to at
least β other members while nonmembers have at most
α links to the community [20]. This definition allows
for overlapping communities whose out-links may out-
number the in-links. To produce an AB community
of size k, we produce a BFS community of size k and
then apply a limited number of sequential node swaps

that aim at making the set an approximate or exact
(α, β)-community. In each step we remove the commu-
nity node with the fewest member neighbors and add
the fringe node with the most member neighbors.

5. Link Communities (LC): In contrast with the ma-
jority of the available algorithms, Link Communities [2]
aims at addressing the overlapping and hierarchical na-
ture of community structure by treating communities
as groups of links rather than nodes. We extract ex-
amples of this structure by applying a standard imple-
mentation of this algorithm to our networks.

6. Infomap (IM): The Infomap algorithm [27] views the
problem of finding communities as akin to the problem
of a map-maker deciding on a level of granularity. The
communities and the nodes therein have names. A ran-
dom walk in the network is described by appending the
community name followed by the name of nodes vis-
ited while in the community to a transcript. The goal
is to find the community structure that minimizes the
expected length of the description. Intuitively, such a
structure would cause random walks to rarely escape
communities.

7. Louvain: The Louvain method [4] is a popular method
for greedy modularity optimization. The algorithm
consists of iteratively aggregating nodes into commu-
nities whenever this move locally improves modular-
ity. The process outputs communities when no further
merge produces a significant gain in modularity.

8. Newman-Clauset-Moore (Newman): This method
is another example of greedy modularity maximiza-
tion [6]. Unlike the Louvain method, which consid-
ers merges that locally improve modularity, Newman-
Clauset-Moore identifies a hierarchical community struc-
ture from which communities are extracted by cutting
the dendrogram that reflects the hierarchy at the level
that maximizes a global value of modularity.

9. Markov Clustering Algorithm (MCL): MCL [7]
is a random-walk-based method. It consists of two
alternating steps. It begins with the random-walk ma-
trix of a graph (the normalized adjacency matrix).
The first step, namely “expansion”, squares this ma-
trix; this corresponds to computing the flow between
clusters. The second step called “inflation”, squares
each element of the matrix individually, and then re-
normalizes; this step corresponds to increasing the strength
of intra-community ties. This process converges to a
stationary matrix with several connected components,
which the algorithm output as the communities.

10. Metis: Metis [13] is a graph partitioning method which
is a variation of the Kernighan-Lin algorithm [14]. Metis
partitions a node-weighted network into a specified
number of equal weight sets while minimizing the num-
ber of edges between the sets. Here we used a version
of Metis we adapted for finding high-conductance sets.

In the process of generating examples, we discard com-
munities of size less than 10 or greater than 1000, as well as
those communities that contain multiple components. The
number of examples extracted varies among the procedures.
However, the methods we use for class separability are sen-
sitive to class imbalance. Thus, we under-sample the large

Feature Description

1 n Number of nodes

2 m Number of edges

3 Diameter Greatest distance between two nodes by traversing shortest paths

4 Edge Density Ratio of m to the maximum possible number of edges

5 Conductance Ratio of m to the sum of the total degrees of the n nodes, including edges to rest of the network

6 Transitivity Ratio of the number of 3-node cycles (triangles) to the number of 2-hop paths (open triangles)

7 Triangle Density Ratio of the number of 3-node cycles (triangles) to the number of possible node triples

8-11 Shortest Path All pairs shortest paths

The features are the three quartiles and the maximum.

12-15 Edge Betweenness For each edge, fraction of all-pairs shortest paths that include that edge

The features are the three quartiles and the maximum.

16-20 Node Betweenness For each node, fraction of all-pairs shortest paths that include that node

The features are the minimum, the three quartiles, and the maximum.

21-25 α For each nonmember on the fringe of the community, number of members that this node

is connected to; The features are the minimum, the three quartiles, and the maximum.

26-30 β For each member, number of other members this node is connected to

The features are the minimum, the three quartiles, and the maximum.

31 Treesum Total number of spanning trees of the community graph, divided by the total number of

spanning trees of a Kn-clique (computed using Kirchoff’s matrix tree theorem [19])

32-36 Information For each node, its Stephenson and Zelen’s information centrality index [28]

Centrality The features are the minimum, the three quartiles, and the maximum.

Table 1: List of features corresponding to measures of the subgraphs that communities induce.

classes and to a lesser extent over-sample small classes to
reduce this source of bias.

Our algorithm selection has the purpose of illustrating the
applicability of our framework. The approach, however, is
not limited to the list we consider. Our method scales to
a large number of classes, and a collection of classes should
include enough information to reflect the analysis intended.
As discussed in the next section, a pair of classes may be
highly correlated to each other (e.g., RW0 and RW15). As
a result, they may split the predictions in such a way as to
obfuscate the interpretation of the outcome. To avoid this
pitfall, an inter-class correlation analysis can be employed
to assess the independence of the algorithm selection [29].

3.2.2 Feature Extraction
In the feature extraction phase, we measure the subgraphs

induced by the communities produced in the previous step
and those induced by annotated communities. We use a
large spectrum of measurements that cover many proper-
ties of both the internal link structure and the external in-
teraction of the community with the rest of the network.
Each measurement corresponds to a dimension of our fea-
ture space. Table 1 lists the features and describes their
corresponding measures.

Most of the features can be understood from their ta-
ble description. The feature Information Centrality, how-
ever, deserves further explanation. This measure captures
a node’s degree of centrality as a function of how fast its
information can sequentially reach every other node in the
network. For a given node, the information centrality com-
putes a harmonic mean of the amount of “signal” that a node
receives from other nodes. A signal between two nodes cor-

responds to a path between them, which varies according to
the “noise”, instantiated here as the path length [28].

By measuring the structural properties described in Ta-
ble 1 for each example of a community derived in the previ-
ous phase, we obtain 11 classes of labeled examples in feature
space, which constitute the input in our framework.

4. FRAMEWORK AND APPLICATION
In this section we present an experimental application us-

ing the data we processed through the steps described in the
previous section.

4.1 Class Separability Measures
Methods for measuring class separability are popular in

machine learning for guiding feature selection analysis. Ac-
cordingly, effective feature sets for classification tasks are
the ones that simultaneously lead to high inter-class and
low intra-class variability [29]. Methods of class separability
allow for a rigorous analysis of independence among classes.
Unfortunately, many of these methods are computationally
demanding or dependent on assumptions which are often
mismatched with applications [8].

In this work, we frame the research question of discrim-
inating the structure of different communities as a class
separability problem. The separability of structural classes
of communities provides information on whether different
communities come from the same (or fundamentally differ-
ent) distributions of feature values. This analysis is infor-
mative of the extent to which different algorithms produce
structural differences and the extent to which community
detection algorithms succeed in producing sets that resem-
ble annotated communities. Aiming at achieving computa-
tional scalability and fine-grained separability information,

(a) Class separability via cross validation (DBLP). (b) Classification of annotated communities.

Figure 1: Distribution of probability mass resulting from the SVM (a) cross validation on the 11 classes, and
(b) classification of annotated communities examples and trained on the 10 classes of algorithms.

we use the performance of existing supervised classifiers as
a measure of class separability. To our definition, classes are
separable to the extent that a classifier can correctly distin-
guish their structure by exhibiting an accurate classification.
More specifically, we employ two techniques, one paramet-
ric, namely Support Vector Machines (SVM) [30], and one
nonparametric, namely k-Nearest-Neighbors (kNN) [1], to
confirm each other’s outcomes while ruling out variability
due to the specifics of each algorithm. We select hyperpa-
rameters in both cases via grid search using the performance
of 10-fold cross validation as the objective function. Both
methods are capable of handling a large number of classes
and scale to a large volume of data.

We measure class separability using the performance of a
3-fold cross-validation. For each network, we train a multi-
class classifier on a set containing two thirds of the examples,
which are selected at random, and then evaluate the perfor-
mance of the model on the remaining third, which constitute
the test set. We perform 3 rounds of this process and average
the outcomes. For each element in a test set, the probabilis-
tic SVM model outputs a probability mass vector indicating
the probability that each data point belongs to each class.

4.2 Experimental Analysis
Our primary goal is to gain insight into whether the classes

are separable in the feature space defined. Second, building
on the preceding observations, we are interested in finding
the algorithms whose output structurally reflects the anno-
tated communities. Finally, we study the features that are
most useful for distinguishing between the structural classes
of network communities.

Our first experiment performs the cross-validation on all
the 11 classes. We first observe that the experiments suffer
little variability between the two classifiers.

To illustrate the method’s output, Figure 1(a) presents

the analysis of the outcome produced by the SVM-based
method applied to the DBLP network. In the picture, we
show a bar graph of the distribution of probability mass for
each class derived from the network DBLP. This graph vi-
sually demonstrates that the bulk of the probability mass
from each class was correctly classified. Table 2 contains a
summary of results for all networks. Each entry in the table
represents the fraction of probability mass from that class
that was correctly assigned. When a value appears in paren-
theses, this indicates that most of the probability mass was
assigned to some other class. While the the SVM provides
a breakdown of values by classes, the last two rows present
global scores of separability computed using scatter matri-
ces [29], which is a standard measure of class separability
in pattern recognition2. The last row presents a reference
point of little separability for each network, where we shuffle
the labels of points before computing the score.

As this table shows, only 17 out of 99 network-class pairs
failed to have a plurality of the probability mass correctly
classified. Newman Modularity is frequently misclassified;
however, it is a small class in all networks, especially on
the smaller ones (e.g., on network SC, Newman Modularity
found only 3 communities of size between 10 and 1000).
In the case of annotated communities a plurality of their
corresponding classes tends to be correctly classified, with
the exception of network Fly. Figure 1(a) serves as a visual
reference of a network whose classes have global separability
score of 22.7. The other networks exhibit comparable scores,
with the exception of network Fly, whose classes are not well
separated.

The previous experiment shows that annotated commu-
nities tend to form their own, separable class that is signif-
icantly distinct from all other classes. However, a question

2We use a criterion referred to as J3 by [29].

Grad Ugrad HS SC Fly DBLP Amaz LJ1 LJ2

BFS 60% 88% 73% 70% (40%) 63% 55% 86% 81%

RW0 44% 55% 43% (39%) (27%) 52% 43% 61% 63%

RW15 40% (29%) 44% 42% 34% 46% 39% 57% 57%

AB 83% 91% 90% 71% 60% 70% 74% 90% 89%

IM 27% (23%) 72% 73% (2%) 62% 51% 82% 66%

LC 68% 96% 83% 85% 83% 67% 56% 90% 89%

Louv. 24% (3%) 49% (1%) (0%) 45% 58% 38% 49%

Newm. (14%) (25%) (15%) (0%) 90% 26% 39% 45% 56%

MCL 19% (22%) 57% 28% (34%) 59% 46% 80% 74%

Metis 61% 73% 81% 90% (42%) 88% 66% 92% 86%

Annot. 37% 33% 50% 46% (8%) 47% 40% 72% 71%

Global 19.2 22.3 26.0 27.4 6.3 22.7 16.4 19.7 21.9

Ref. 14.7 13.1 13.0 13.0 12.9 13.0 12.9 12.9 12.9

Table 2: Percentage of the probability mass of classification of elements in the test set into the correct class,
using SVM, for all networks. The last two rows present global separability scores using scatter matrices.

Network Grad Ugrad HS SC Fly DBLP Amaz LJ1 LJ2

Number of Features Selected 6 7 10 5 6 10 8 12 11

Rank Feature

1 Conductance 1 1 1 1 1 1 1 1

1 Diameter 1 1 1 1 1 1 1 1

3 Info Centrality∗ 2 2 3 1 1 2 1 2 2

4 Node Betweenness∗ 2 2 2 1 5 5

5 Shortest Path∗ 1 3 2 1 1 1

6 β∗ 1 1 1 2 1 1 1

7 α∗ 1 1 1 2 1

Other features∗∗ #6 #4, #7

Table 3: Summary of the feature selection results. Features are ranked in order of their frequency in the
selection list over the networks. (∗ reporting how many quartiles of the property were selected. ∗∗ feature number

according to Table 1.)

of interest to the design and application of community de-
tection procedures is what algorithms output communities
bearing the closest structural resemblance to the annotated
communities. To answer this question we perform a varia-
tion of the classification task previously described. We train
a classifier on the 10 classes corresponding to the community
detection algorithms and leave the class of annotated com-
munities out of the training set. The goal of this experiment
is to evaluate to which class of intrinsically defined commu-
nities the annotated examples of the test set are classified.

Figure 1(b) shows the distribution of probability mass
of the annotated communities classified into the different
classes corresponding to community detection algorithms.
The structure that random-walk-based algorithms produce
is clearly the most similar to that of the annotated commu-
nities. For 7 of the 9 networks, a plurality of the probability
mass from the annotated communities was assigned to the
classes RW15 and RW0. Due to their high similarity, the
classifier confuses these two random-walk-based algorithms
as shown in Figure 1(a). The exceptions to this are net-
works Grad and Fly. For Grad, their annotated commu-
nities’ probability is spread across all classes, where Metis
received the plurality of the mass. In the Fly network, the
greatest share of the mass of annotated communities is as-

signed to LC. These exceptions are associated with small
network datasets, therefore the variability could be due to
small population sample size. Given the diverse nature of
these networks, it is perhaps surprising that in virtually
all domains the random-walk communities bear the closest
structural resemblance to the annotated communities.

4.2.1 Feature Selection
As we have seen in the preceding experiment, each com-

munity detection algorithm extracts a distinct structure,
which our method is able to separate when projected onto
the feature space we define. In this section, we are concerned
with identifying the ways in which the algorithms produce
bias by finding which properties exhibit the highest degree
of between-class variability.

To address this question we use the Correlation-based Fea-
ture Selection algorithm (CFS) [11] to identify subsets of
the most discriminative features for each network. CFS is
intended to give a high score to sets of features that are
highly predictive of the class and are not redundant with
one another. CFS begins with no nodes in the feature set,
and it then employs a hill-climbing algorithm to search the
space of feature subsets.

Table 3 lists the features selected by CFS for each net-

Grad Ugrad HS SC Fly DBLP Amaz LJ1 LJ2

All Features 62.9% 86% 82.2% 80.9% 93.6% 81.3% 65.3% 89.1% 88.5%

With selection 61.5% 84.7% 85.1% 81% 90.6% 79.4% 63% 78.8% 76%

Table 4: k-Nearest-Neighbors classification performance using both the full set of features and the subset of
the most discriminative features selected by CFS.

work ranked in order of the frequency with which they ap-
pear in the selection over the networks. The table lists the
most frequent features, or sets of features for those proper-
ties calculated with quartiles. The entries for row“Features”
and column “Network” that contain the value 1 indicate the
presence of that feature in the feature selection applied to
that particular network data, whereas empty cells indicate
the absence thereof. Integers larger than 1 can be found
in some of the entries and indicate the number of quartiles
from that feature that were selected by CFS. In nearly every
network, conductance, diameter, information centrality, and
node betweeness were the most discriminative features.

Surprisingly, in several cases, multiple quartiles of a fea-
ture appear: e.g., Fly has 3 path length quartiles, and LJ1
and LJ2 each contain all 5 node betweenness features. We
had expected that different quartiles of the same feature
would be highly correlated to each other, and therefore they
would be unlikely to co-occur among the features selected by
CFS. Instead, these results suggest that varying the choice of
community detection algorithm results in fine-grained vari-
ation in the distribution of such features.

To assess the effectiveness of the features CFS found, Ta-
ble 4 presents for all networks the classification performance
of the kNN cross validation using both the full set of fea-
tures and the subset of features found by CFS. We see that
in most cases, there is very little loss in accuracy. We observe
a similar qualitative outcome for the SVM cross validation.
In the table, the largest drops happened for LJ1 and LJ2
and reduced the accuracy by less than 15%. Being nearly
as discriminative as the full set, a reduced set containing a
handful of features retains the relevant information needed
to analyze the bias produced by different algorithms.

We use the sets of the most discriminative features to
study which tendencies in feature values are associated with
which algorithms. To this end, we conducted a range anal-
ysis which distinguishes the different algorithms according
to the value of their features. In the interest of space, we
summarize the qualitative outcome of this experiment in Ta-
ble 5. The entries correspond to the bias produced by each
of the algorithms, considering all networks. Features take on
a varying range of values across different networks. Thus,
to label the magnitude of features, we compute the mean
value of each class and compute a global median of these
averages over all classes. The averages occurring between
the 33rd and 67th percentile constitute the medium denom-
ination; whereas those below the 33rd and above the 67th
constitute low and high, respectively. Finally, we count how
many times each feature produced each of the denomina-
tions across all the networks. From this count, we determine
the most frequent tendency which make up the entries we
present in the table.

Using this analysis, we are able to group algorithms with
similar behavior. For example, the random-walk-based algo-
rithms produce the same structural bias. The same holds for

Algorithm Conduct. Diam. Nd.Betw. Inf.Cent.

Annotated Medium High/Low High Low

RW0, RW15 Low High High Low

Louvain High High Low Medium

Newman High High Low Medium

AB Medium Low Medium High

LC Medium Low Medium High

Metis High Medium Medium Medium

IM High Medium High Medium

Table 5: Tendency of different algorithms with re-
spect to the most discriminative features.

Louvain and Newman; and AB and LC. The profile of an-
notated communities is close to that of random-walk-based
algorithms, with a few nuances. Annotated communities
exhibit medium conductance whereas RW0 and RW15 ex-
tract low conductance sets. In addition, the diameter of
annotated communities was measured as high for four of
the networks, medium for one of them, and low for the re-
maining four. This contrasts with RW0 and RW15, which
produce set with high diameter. Nevertheless, the similarity
due to other features explains the ways in which annotated
communities resemble the output of random-walk-based al-
gorithms. Finally, Metis and IM differ only in behavior of
the node betweenness feature.

5. DISCUSSION
In this paper we tackle the complexity involved in the

task of extracting communities in networks by illuminating
structural properties of different algorithms and communi-
ties that arise in networks across a diverse set of domains.
Our approach differs fundamentally from previous work in
the area due to its supervised nature. The existing com-
munity detection algorithms treat the problem as an unsu-
pervised decomposition of a network with little sensitivity to
different purposes, structures of interest, and the various do-
mains of application. Accordingly, our supervised approach
may be used by a practitioner to make an informed decision
about the most suitable algorithm for a given network in
the following way. First, we produce a test set comprising
examples of the communities we are interested in finding,
which could be either real or synthetic. Second, we choose
a set of algorithms we want to evaluate. Finally, we apply
our approach using the target network and present the clas-
sifier with the test set. The classifier assigns the probability
mass of the test set to the class of algorithm that bears close
resemblance to the examples. The algorithm that receives
the bulk of the mass is the algorithm that may succeed in
extracting communities that structurally resemble the ones
we are interested in. Researchers may also benefit from our
methodology when designing new community detection al-

gorithms as a way to compare the behavior of new methods
with existing ones.

Structural similarity is a weaker requirement than accu-
racy. In other words, communities with similar properties to
real communities may not correspond exactly to the commu-
nities we may expect to find. Nevertheless, mastering struc-
ture is a fundamental stepping stone in the development of
algorithms to accurately find the communities of interest.

Finally, our approach suggests a change in the way we
approach the problem of community detection. Instead of
developing multiple general purpose algorithms that find a
particular type of community, one could use a supervised
approach that allows the user to specify what they intend
to find through examples. Then, one could develop an algo-
rithm that learns from these examples and retrieves similar
structures. This is part of our agenda for future work.

Acknowledgments
We are grateful to Eduardo Valle for valuable discussions.
Support for this research is provided by AFOSR grants FA9550-
09-1-0100 and FA9550-09-1-0675.

6. REFERENCES
[1] D. W. Aha, D. Kibler, and M. K. Albert.

Instance-based learning algorithms. Machine Learning,
6:37–66, January 1991.

[2] Y. Ahn, J. P. Bagrow, and S. Lehmann. Link
communities reveal multiscale complexity in networks.
Nature, 466(7307):761–764, 2010.

[3] L. Backstrom, D. Huttenlocher, J. Kleinberg, and
X. Lan. Group formation in large social networks:
Membership, growth, and evolution. In Proceedings of
the 12th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2006.

[4] V. D. Blondel, J. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Mar. 2008. Journal of Statistical Mechanics.

[5] F. R. K. Chung. Spectral Graph Theory. American
Mathematical Society, Dec. 1996.

[6] A. Clauset, M. E. J. Newman, and C. Moore. Finding
community structure in very large networks. Physical
Review E, 70(6):066111+, Dec. 2004.

[7] S. V. Dongen. Graph clustering via a discrete
uncoupling process. SIAM Journal on Matrix Analysis
and Applications, 30(1):121–141, 2008.

[8] N. Fatemi-Ghomi, P. Palmer, and M. Petrou. The
two-point correlation function: A measure of interclass
separability. Journal of Mathematical Imaging and
Vision, 10:7–25, 1999. 10.1023/A:1008362414568.

[9] S. Fortunato. Community detection in graphs.
0906.0612, June 2010. Phys. Reports 486, 75-174.

[10] M. Girvan and M. Newman. Community structure in
social and biological networks. Proc. of the National
Academy of Sciences, 99(12):7821 –7826, June 2002.

[11] M. A. Hall. Correlation-based Feature Subset Selection
for Machine Learning. PhD thesis, Department of
Computer Science, University of Waikato, 1999.

[12] S. Hoory, N. Linial, and A. Wigderson. Expander
graphs and their applications. Bulletin of the
American Mathematical Society, 43(4):439, 2006.

[13] G. Karypis and V. Kumar. A fast and high quality

multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput., 20:359–392, December 1998.

[14] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. The Bell System
Technical Journal, 49(1):291–307, 1970.

[15] A. Lancichinetti and S. Fortunato. Community
detection algorithms: A comparative analysis.
Physical Review E, 80:056117, Nov 2009.

[16] J. Leskovec, L. Adamic, and B. Huberman. The
dynamics of viral marketing. In Proceedings of the 7th
ACM Conference on Electronic Commerce, 2006.

[17] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney.
Statistical properties of community structure in large
social and information networks. In Proc. of the 17th
Intl. Conf. on World Wide Web, 2008.

[18] J. Leskovec, K. Lang, and M. Mahoney. Empirical
comparison of algorithms for network community
detection. In Proceedings of the 19th Intl. Conference
on World Wide Web, 2010.

[19] R. Lyons and Y. Peres. Probability on Trees and
Networks. Cambridge University Press, 2012.

[20] N. Mishra, R. Schreiber, I. Stanton, and R. Tarjan.
Finding strongly knit clusters in social networks.
Internet Mathematics, 5(1):155–174, Jan. 2008.

[21] A. Mislove, B. Viswanath, K. Gummadi, and
P. Druschel. You are who you know: Inferring user
profiles in online social networks. In Proc. 3rd ACM
Intl. Conf. on Web Search and Data Mining, 2010.

[22] M. Newman. Detecting community structure in
networks. The European Phys. Journal B,
38(2):321–330–330, Mar. 2004.

[23] M. Newman. Modularity and community structure in
networks. Proceedings of the National Academy of
Sciences, 103(23):8577 –8582, June 2006.

[24] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek.
Uncovering the overlapping community structure of
complex networks in nature and society. Nature,
435(7043):814–818, June 2005.

[25] D. Park, R. Singh, M. Baym, C.-S. Liao, and
B. Berger. IsoBase: a database of functionally related
proteins across PPI networks. Nucleic Acids Research,
(suppl 1):D295–D300.

[26] P. Pons and M. Latapy. Computing communities in
large networks using random walks. J. of Graph
Algorithms and Applications, 10(2):191–218, 2006.

[27] M. Rosvall and C. Bergstrom. Multilevel compression
of random walks on networks reveals hierarchical
organization in large integrated systems. PLoS ONE,
6(4):e18209, 04 2011.

[28] K. Stephenson and M. Zelen. Rethinking centrality:
Methods and examples. Social Networks, 11(1):1–37,
Mar. 1989.

[29] S. Theodoridis and K. Koutroumbas. Pattern
Recognition. Academic Press, 4th edition, Nov. 2008.

[30] V. N. Vapnik. Statistical Learning Theory.
Wiley-Interscience, 1st edition, Sept. 1998.

[31] E. Weinan, T. Li, and E. Vanden-Eijnden. Optimal
partition and effective dynamics of complex networks.
Proceedings of the National Academy of Sciences,
105(23):7907–7912, June 2008.

	Introduction
	Background and Related Work
	Building Structural Classes
	Datasets
	Annotated communities

	Structural classes and feature space
	Producing the examples
	Feature Extraction

	Framework and Application
	Class Separability Measures
	Experimental Analysis
	Feature Selection

	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

