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Abstract. The problem of hiding a node inside of a network in the
presence of an unauthorized crawler is shown to be NP-complete. The
available heuristics tackle this problem from mainly two perspectives:
(1) the local immediate neighborhood of the target node (local pertur-
bation models) and (2) the global structure of the graph (global pertur-
bation models). While the objective of both is similar (i.e., decreasing
the centrality of the target node), they vary substantially in their per-
formance and efficiency; the global measures are computationally ineffi-
cient in the real-world scenarios, and the local perturbation methods deal
with the problem of constrained performance. In this study, we propose
a community-based heuristic, CoVerD, that retains both the computa-
tional efficiency of local methods and the superior performance of global
methods in minimizing the target’s closeness centrality. Our experiments
on five real-world networks show a significant increase in performance by
using CoVerD against both BFS and DFS crawling attacks. In some in-
stances, our algorithm successfully increased the crawler’s budget by 3
and 10 times compared to the next best-performing benchmark. The re-
sults of this study show the importance of the local community structure
in preserving the privacy of the nodes in a network, and pave a promising
path for designing scalable and effective network protection models.
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1 Introduction

With the increase in digitization of entities and their data, the problem of main-
taining the privacy of critical nodes in a network has become ever more rele-
vant [22]. Many versions of this problem have been considered. For example,
Waniek et al. examine how to protect individuals from detection in a crawling
attack [25], and others have addressed the susceptibility of easily accessible pub-
lic profiles in de-anonymization attempts [10, 18, 21, 24]. Numerous studies have
been dedicated to finding the optimal crawling strategy for network adversarial
attacks and methods for their timely detection [2, 3, 5, 15, 23]. This problem
can be considered from a variety of angles, including designing effective attack
strategies, early detection of attacks, or network defense, in which the goal is to
minimally perturb the network so as to protect the target nodes from detection.
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In this work, we consider the problem of network defense. We assume that
the defender has a limited defense budget (i.e., number of allowable edge pertur-
bations) for protecting the target nodes, and has no knowledge of the attacker’s
logistics (i.e., starting point and the crawling algorithm). Note that in this prob-
lem, the highest level of protection is achieved by isolating the target. However,
this is not an acceptable solution, as these targets are likely to be important
to the network, and so removing their connections harms the functionality of
the system. The literature contains few works dealing with network protection
strategies from the defender’s perspective. Previous work has shown that target
node protection from the defender’s perspective results is NP-complete [9, 16].
Heuristic solutions use either global graph perturbations [4, 14] or local graph
perturbations [1, 25]. The time complexity of the former is substantially greater,
and often do not substantially outperform the local methods. However, the search
space for local-based methods is small and they rapidly reach their performance
plateau regardless of budget (see Section 4).

In this study, we propose a new approach for vertex defense against crawling
attacks: community-based local graph perturbations, which find a middle ground
between the fast computation of local perturbations and larger search space of
global methods.1 The only information required by CoVerD is the community
labels of nodes and their 1-hop neighborhood, which is the same information
required by local network perturbation heuristics [25]. Therefore, our algorithm
is fast and, due to its budget-aware decision making, surpasses the performance
of both local and global perturbation heuristics (see Section 5). In fact, we
show that CoVerD has the same impact on reducing the closeness centrality of
the target node without the need for expensive computation of centrality. The
summary of our contributions is as follows.

– We formulate the problem of node protection in complex networks from a
defender’s perspective. We consider the general case in which the defender
has no information on the attacker’s starting point or its crawling algorithm.

– We propose a more general heuristic which considers both the local and
community information of the target node. Our community-based defender,
CoVerD, is fast and benefits from the advantages of local network perturba-
tions (namely, computational cost and defending budget) while bypassing its
shortcomings (namely, the rapid performance plateau). CoVerD can achieve
close to optimal performance (i.e., the attacker’s budget is maximized) and
effectively reduces the closeness centrality of the target node.

– On five real-world networks of varying sizes, we show the superiority CoVerD
in terms of efficiency and performance against different crawling adversaries.2

2 Related Work

The problem of defending target nodes against crawling attacks has been studied
in four general domains: (1) optimization of crawling techniques for data acqui-

1 ‘Community’ here refers to a topological community.
2 The source code will be made available upon publication.
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sition (attacker’s perspective) [10, 18, 21, 24]; (2) detection of malicious crawling
behavior (attacker’s perspective) [17]; (3) increasing network robustness against
crawling attack through global network perturbations (defender’s perspective)
[9, 14, 16]; (4) protecting target nodes through local network perturbations (de-
fender’s perspective) [1, 25]. As our focus is on defender’s perspective, here we
only discuss the latter two categories in depth.

2.1 Defense via Local Network Perturbations

A simple, yet effective, method in locally manipulating graph structure is ROAM
(Remove One, Add Many), the algorithm proposed by [25]. ROAM follows the
intuition that the most important factor in the target node’s exposure is its
immediate neighborhood. ROAM decreases the degree centrality of the target
node by iteratively removing its highest-degree neighbors and connecting them
to other immediate neighbors of the target node, ensuring that the average
path length and connectivity in the target’s neighborhood are preserved. Abra-
hamsson adopts the same algorithm but uses eigenvector centrality to pick the
neighbor candidate [1]. Their results are comparable to that of ROAM, but incur
greater computational costs. The main drawback of ROAM is the limit to its
performance. Once the target node’s degree reaches 1, ROAM stops and the al-
gorithm reaches its plateau even in the presence of more protection budget. Our
method matches or beats ROAM’s performance for small budgets, but rapidly
reaches close to optimal performance with a slight increase in budget.

2.2 Defense via Global Network Perturbations

The majority of works in this category use various edge and/or node centrali-
ties to greedily remove edges. The objective is to minimize/maximize a global
network measure, such as network centrality or average path length. Crescenzi
et al. address the complementary problem to ours: maximizing the visibility of
a node in the network [9]. They achieve this goal by greedily adding outgoing
edges from the target node such that the closeness or betweenness centrality of
the target node is maximized. Their time complexity is O(k.n.g(n,m)), where
n and m are the number of nodes and edges respectively, and g(n,m) is the
complexity of computing either either closeness or betweenness centrality for
a node in the graph. Numerous works have proposed methods to reduce the
complexity of g(n,m) [6, 8, 19, 20], among which Ji et al. [14] specifically tai-
lored their method for the vertex protection problem. The time complexity of
their approach is O(k · m · τmn), in which τmn represents the number of tra-
verse nodes and edges that can be computed in O(m + n) in the worst case.
Despite these efforts, the greedy approach using global network measures do not
outperform local measures, such as ROAM [4]) and are infeasible on large scale
real-world networks. As such, a few studies have used greedy removal of edges
without re-computation of the centrality measures as well[14, 16]. We use three
of these methods as baselines that have substantially higher computational cost
and worse performance than local methods, including our algorithm, CoVerD.
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Algorithm 2: CoVerD

Input: G, t, C(t), bd
continue← True
while continue do

G, bd, continue ← IncreaseTargetLoyalty(G, t, C(t), bd)
N ← NGt(t)
G, bd, continue ← ROAM(G, t, bd)
G, bd, continue ← Increase1HopLoyalty(G, N, t, C(t), bd)
G, bd, continue ← BuildLoyaltyChamber(G, t, C(t), bd)

end
return G

3 Preliminaries and Problem Definition

Algorithm 1: ROAM
Input: G, t, bd
flag ← False
spent← 0
while spent ≤ bd do
NGt (t)← SortByDegree(NGt (t))
for p ∈ NGt (t) do

G′ ← G(V,E \ {(t, p)})
if IsConnected(G′) then

G← G′

q ←Random(NGt (t))
G← G(V,E ∪ {(p, q)})
spent← spent + 2

end
end

end
bd ← bd − spent if bd ≤ 0 then

flag ← True
end
return G, bd, flag

Network Notation. Let G = (V,E)
(|V | = n and |E| = m) be a con-
nected, undirected, unweighted graph
with a mapping C(.) that projects |V |
onto non-overlapping partitions. For
each node t ∈ V , we represent its 1-
hop (immediate) neighborhood in G
as NG(t) = {j|j ∈ V, (t, j) ∈ E} and
its cohort as C(t) = {j|j ∈ V, C(j) =
C(t)}. The subgraph of G that con-
tains the nodes in C(t) is denoted
as Gt = (C(t), Et), in which Et =
{(i, j)|i, j ∈ C(t), (i, j) ∈ E}. We will
refer to this induced subgraph as the
node’s cohort subgraph. Also, the connectivity of the cohort subgraph is the only
necessary condition for our algorithm and we can generalize our approach to
directed and/or weighted graphs as well (see 4.1).

Problem Definition. The vertex defense problem (also referred to as node
protection and hiding node problem [16, 25]) involves a target node t and two
actors: a crawling adversary (attacker) and a defender. If we denote the crawling
algorithm used by the attacker as A and the probability of A visiting a node u
in G at the lth step as PA(u,G, l), the adversary’s objective is to find an optimal
A∗ such that A∗ = maxl,A,ba PA(t, G, l) for l ≤ ba and ba � n.

The defender has no knowledge of the attacker’s logistics (crawling algorithm,
budget, or starting point). It only has information on the target node and the
community it belongs to. Within a limited budget bd � m, the defender has
the ability to perturb any set of edges in the community of t to obtain a new
graph G

′
. Its objective is to find the optimal perturbed graph G∗ such that

G∗ = minl,G′ ,ba
PA(t, G

′
, l)] for l ≤ ba and ba � n.

4 Method

The goal of CoVerD is to minimize the closeness centrality of the target node
(which increases the attacker’s required budget) as much as the available defense
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budget permits, by using only the information of the cohort neighborhood of the
target node. This strategy is intuitive: focus on the immediate neighborhood of
the target for small budgets and expand attention to further neighborhoods
within the cohort as the budget increases. To this end, CoVerD uses a hier-
archical modular structure to achieve the proper distribution of the available
budget.

Algorithm 3: IncreaseTargetLoyalty
Input: G, t, C(t), bd
flag ← True
spent← 0
N ′ ← SortByDegree(NG(t) \ NGt (t))

for p ∈ N ′ do
G′ ← G(V,E \ {(t, p)})
if IsConnected(G′) then

G← G′

spent← spent + 1
if spent > bd then

break
end

end
end
bd ← bd − spent
if bd ≤ 0 then

flag ← False
end
return G, bd, flag

There are two underlying assump-
tions behind CoVerD ’s intuition: (1)
for decreasing the centrality of a node,
its 1-hop neighborhood plays a more
prominent role than its larger k-
hop neighborhood; (2) the existence
of a protective community structure
(i.e., with high average loyalty score)
around the target node overpowers
the global pathways to the target
node. The first assumption is already
shown to be the case in real-world so-
cial networks [4, 25]. In this study,
we intend to show that the second as-
sumption holds for these networks.

Cohort Loyalty Score. While it is tempting to fully isolate a cohort con-
taining a sensitive node, in practice, outgoing connections from cohort are nec-
essary to keep the functionality of the network, even though they increase the
cohort’s vulnerability. As such, we assign a loyalty score to each node inside of
the cohort to signify the impact that a node in the cohort has on exposing the
cohort to the rest of the network. Formally, for each node i inside of a cohort

C(t), its loyalty score with respect to C(t) is SC(t)(i) = |{(i,j)|(i,j)∈Et}|
|{(i,j)|(i,j)∈E}| . The lower

a node’s loyalty score, the higher its reach outside of its cohort.

Why Community-based Defense? The reachability of a node is first and
foremost defined by its local community neighborhood, as discussed in prior
studies in contagion processes [12, 13, 24], which covers the k-hop neighborhood
of a target node t for k = 1, 2, ..., d(t, u) with d(t, u) representing the eccentricity
of t. For large k, the community’s average loyalty score decreases and loses rele-
vance to t. We argue that this is the case in the global target defense algorithms
in which the target node’s community structure is ignored- i.e., consideration of
global neighborhoods instead of local neighborhood. The local defense strategies,
on the other hand, can be considered another special case of community-based
defense in which k = 1. However, social networks are shown to have high clus-
terability in their 2 and 3-hop neighborhoods as well [11, 13], and this is what
a community-based method exploits. This gives a balance between capturing a
larger search space, without the explosion in computation costs.



6 Hozhabrierdi and Soundarajan

4.1 CoVerD Algorithm Algorithm 4: Increase1HopLoyalty
Input: G, N , t, C(t), bd
flag ← True; spent← 0
for p ∈ N do

N ′ ← SortByDegree(NG(p) \ NGt (p))

for q ∈ N ′ do
G′ ← G(V,E \ {(p, q)})
if IsConnected(G′) then

G← G′; spent← spent + 1
if spent > bd then

break
end

end
end
if spent > bd then

break
end
for q ∈ C(t) do

Compute SC(t)(q)
end
for q ∈ NGt (p) do

if SC(t)(q) < 1 then
G′ ← G(V,E \ {(p, q)})
if IsConnected(G′) then

G← G′; spent← spent + 1
if spent > bd then

break
end

end
end

end
if spent > bd then

break
end

end
bd ← bd − spent
if bd ≤ 0 then

flag ← False
end
return G, bd, flag

CoVerD consists of four separate
blocks. The first block (Algorithm 3)
maximizes the loyalty score of the tar-
get node t by removing its connection
to neighbors outside of its cohort in
order of those neighbors’ degrees. This
ordering assures that even for a very
limited budget, the target node loses
its centrality effectively. The second
block (Algorithm 1) is the degree-
biased ROAM method [25] that it-
eratively disconnects the target from
its highly connected neighbors. To as-
sure the connectivity, as with the orig-
inal ROAM algorithm, we make an
edge between the disconnected neigh-
bor and one of the immediate neigh-
bors of t. The combination of these
two blocks guarantees the high per-
formance of the local perturbations in
the absence of enough defense budget.

As the budget increases, the third
and fourth block boost the perfor-
mance of the algorithm and break the
plateau of the local methods such as ROAM. The third block (Algorithm 4)
increases the loyalty score of the 2 − hop neighborhood of t by removing the
2− hop connections that leave C(t). Algorithm 5: BuildLoyaltyChamber

Input: G, t, C(t), bd
flag ← True; spent← 0
for p ∈ C(t) do

compute SC(t)(p)
end
candid← {(n1, n2)|(n1, n2) ∈
Et, SC(t)(n1) = 1, SC(t)(n2) < 1}
candid←SortByScoreDiff(candid)
for q ∈ candid do

G′ ← G(V,E \ {(p, q)})
if IsConnected(G′) then

G← G′ ; spent← spent + 1
if spent > bd then

break
end

end
end
bd ← bd − spent
if bd ≤ 0 then

flag ← False
end
return G, bd, flag

Increasing the loyalty score of this
neighborhood promises to have a large
impact on decreasing the closeness
centrality of the target node (as shown
in Figure 2). Although the third block
achieves a considerable boost com-
pared to using the first two blocks
alone, we witnessed that, by building
a loyalty chamber in the target’s co-
hort, we are able to boost the per-
formance of the algorithm for net-
works with densely connected commu-
nities (i.e., a low average loyalty score
per community). We build the loyalty
chamber in the fourth block (Algo-
rithm 5) by using the remaining budget for disconnecting nodes within C(t)
whose difference in loyalty score is maximum. This last step divides the cohort
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into two distinctive partitions without disconnecting the graph; the loyal nodes
that are purely connected between themselves, and the disloyal nodes that are
loosely attached to the cohort. The overall algorithm is shown in Algorithm 2.

Time Complexity. For a target node t, Algorithms 3 and 1 visit at most
|NG(t)| nodes each. The Algorithm 4 iterates over the 2-hop neighborhood of
the target and computes the loyalty score for each node in the cohort, visiting on
average |NG(t)| · (|NG|+ |Ct|), in which the |NG| is the average degree in G. The
Algorithm 5 visits every node in the cohort once to re-compute their loyalty score
and visits exactly |Ct| nodes. For the average case in which |NG(t)| ≈ |NG| = d,
the overall time complexity of CoVerD is O((d + 1) · |Ct| + d2 + 2d), which for
d� |Ct| curtails to O(d · |Ct|). So, the speed of CoVerD depends mainly on the
size of the target’s community. This is a significant improvement from the poly-
nomial time complexity of global methods (see Section 2) and is still comparable
to local methods with average time complexity of O(d).

5 Experiments

In this section, we analyze the performance of CoVerD algorithm against both
local and global perturbation algorithms on five real-world datasets.
Experimental Setup. In our experiments, we implement a defense strategy
(edge perturbations) on a given network G for a target node t to obtain defended
network G∗. Then, we run a crawling algorithm starting from a given source node
and obtain ba, the number of nodes explored by the adversary crawler, before
reaching t. ba is at most |V |, so the defender performance metric is ba

|V | . We select

target nodes in three ways, and for each, select 5 nodes:
– Random Targets: The target nodes are chosen uniformly at random.
– Degree-based Targets: The targets are chosen with probability propor-

tional to degree. This strategy mirrors the attack on well-connected influen-
tial nodes.

– Community-based Targets: First, each community receives two scores,
each in [0, 1], based on (a) their size and (b) density of their intra-group
edges. The normalized sum of these two scores gives a final ranking of each
community. The targets are chosen from |V | with a probability that is biased
towards the score of their respective community. This strategy mirrors the
attack on well-connected influential communities.

We choose five different source nodes at random for the attacker’s starting
point. We run our simulation for all (target, source) combinations (i.e., 75 pairs)
and report their average performance. This procedure is repeated for values of
bd ranging from 0.1% to 5% of the edges in the graph.

Datasets. We use five real-world datasets whose names and basic statistics
are shown in Table 1. For the community assignment in each network, we use
Louvain community detection method [7].

Defender algorithms. We compare our algorithm against both local and
global defenders. ROAM is the most prominent local-perturbation method [25]
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Fig. 1: The defender budget vs. attacker budget for different defender algorithms. The
plots show the aggregated simulation results for degree-based target nodes and BFS
crawling attack. Similar results were obtained for DFS attack as well as community-
based and random target nodes. CoVerD outperforms all the baselines for the same
values of bd. It also reaches the optimal performance (ba ≈ 1) on the majority of
datasets.

(see 2). Among the global perturbations, however, our choices are limited to
those that have feasible computation time on our real-world networks. We build
three global defenders by following the proposed approximate global perturba-
tion methods in [3, 16]. In our four baselines: ROAM is implemented similarly
to Algorithm 1, except that we do not limit the neighborhood of the target to
the cohort neighbors. Betweenness, PageRank, and MaxDegree score each
edge as the sum of it’s endpoints’ scores, where each node is scored by its be-
tweenness centrality, PageRank, or MaxDegree, respectively. The top scoring bd
edges are removed.

Attacker algorithms. According to [17], the hallmark of aggressive crawling
is the choice of an expansion-based method that allows for as far as possible from
the starting point, such as depth-first search (DFS). On the other hand, innocent
crawlers tend to remain in the local neighborhood of the starting node, and
tend to resemble breadth-first search (BFS). As such, we have chosen these two
crawling techniques to show the performance of our algorithm in the presence of
both aggressive and innocent crawlers. (Note, however, that CoVerD is agnostic
to the crawling algorithm.)

5.1 Results

Table 1 shows the result3 of our experiments for bd = 0.006|V |. Against the
BFS crawler, CoVerD shows a pronounced superior performance and, in some
instances, it increases the crawler’s budget by 3 and 10 times compared to the

3 For our largest dataset, github, obtaining the results of the global measures was
infeasible
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Networks Defender Random Target Degree-based Target Community-based Target
BFS DFS BFS DFS BFS DFS

lastfm-asia
|V | = 7, 624

|E| = 27, 806

Original 0.12 0.28 0.54 0.20 0.48 0.21
Betweenness 0.16 0.38 0.53 0.27 0.49 0.37
PageRank 0.23 0.23 0.55 0.19 0.5 0.34
MaxDegree 0.18 0.38 0.55 0.27 0.43 0.33

ROAM 0.44 0.55 0.90 0.58 0.84 0.40
CoVerD 0.99 0.68 1.00 0.56 0.96 0.50

musae-twitch
|V | = 7, 126

|E| = 35, 324

Original 0.19 0.86 0.35 0.18 0.53 0.43
Betweenness 0.20 0.88 0.31 0.17 0.55 0.69
PageRank 0.26 0.88 0.31 0.20 0.55 0.47
MaxDegree 0.31 0.69 0.30 0.18 0.54 0.37

ROAM 0.45 0.86 0.84 0.29 0.89 0.58
CoVerD 0.48 0.94 0.95 0.78 0.89 0.53

deezer-europe
|V | = 28, 281

|E| = 92, 752

Original 0.20 0.26 0.24 0.57 0.12 0.22
Betweenness 0.23 0.18 0.33 0.67 0.11 0.16
PageRank 0.19 0.18 0.23 0.54 0.11 0.23
MaxDegree 0.19 0.16 0.23 0.39 0.12 0.15

ROAM 0.56 0.52 0.23 0.39 0.42 0.52
CoVerD 0.82 0.56 0.92 0.93 0.99 0.79

musae-facebook
|V | = 22, 470

|E| = 171, 002

Original 0.32 0.38 0.49 0.39 0.8 0.69
Betweenness 0.33 0.36 0.49 0.37 0.76 0.68
PageRank 0.31 0.51 0.51 0.33 0.80 0.70
MaxDegree 0.33 0.17 0.56 0.40 0.79 0.59

ROAM 0.85 0.71 0.83 0.65 0.80 0.58
CoVerD 0.99 0.65 0.98 0.65 0.98 0.89

musae-github
|V | = 37, 700

|E| = 289, 003

Original 0.27 0.35 0.00 0.01 0.33 0.18
Betweenness NA NA NA NA NA NA
PageRank NA NA NA NA NA NA
MaxDegree NA NA NA NA NA NA

ROAM 0.93 0.52 0.46 0.05 0.90 0.49
CoVerD 0.98 0.64 0.86 0.59 0.97 0.53

Table 1: The performance of all defenders against BFS and DFS crawling attacks for
different types of target nodes. The values show the normalized attacker budget ( ba

|V | ) in
order to discover the target node. The values closer to 1 indicate superior performance
of the defender and are shown in bold. For BFS crawlers, CoVerD always surpasses
the benchmarks with considerable Margie. The same holds true for DFS crawlers in the
majority of cases. In general, all defenders perform worse against the DFS crawling
attack (aggressive crawling).

next best-performing benchmark (see the result for degree-based target node of
deezer and github). In 60% of simulations, it achieves close to perfect results
(ba ≥ 0.96). The hardest dataset for this task was twtich in which the results of
our best performing models, CoVerD and ROAM, are relatively low. However,
compared to the undefended graph and the three global methods, CoVerD still
increases the attacker’s budget by ≈ 50%. Against the more aggressive crawling
scheme of DFS, all models perform worse than their BFS counterpart, as ex-
pected. Nonetheless, CoVerD outperforms all benchmarks in 80% of simulations
and, in the remaining cases, it offers competitive results.

Figure 1 shows the change in defenders’ performance with respect to their
availbe budget. In all cases, CoVerD reaches near optimal performance with
budgets less than 0.01|V |. ROAM also offers decent results in the majority of
the cases. However, its effectiveness rapidly reaches its plateau and never offers a
near-optimal result. Its surprisingly poor performance for deezer in Figure 1, in
contrast to the near-optimal performance of CoverD, suggests the importance
of looking beyond the immediate neighborhood of the target node. Recall that
for small defense budgets, the only difference between CoVerD and ROAM is
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Fig. 2: Closeness centrality of the target node (y-axis) vs. the defense budget (x-axis).
The plots belong to lastfm data. For each plot, we have used the mean of the closeness
centrality among all the target nodes. It is evident that CoVerD substantially surpasses
both local and global measures in decreasing the closeness centrality of the targets for
all target types.

the maximization of target’s loyalty score, SC(t)(t). Hence, the superior perfor-
mance of CoVerD for small budgets versus that of ROAM in Figure 1 shows the
importance of community membership in determining a node’s reachability.

In all previous studies, the indicator of a defender’s success was defined by
its ability to minimize the closeness (or betweenness) centrality of a target node
(in contrast to ours in which the increase in ba marks the performance). We
also show the change in the closeness centrality of the target nodes for different
bd in figure 2. Even though we did not use any global measures to decrease
the closeness centrality directly, CoVerD has achieved the fastest and deepest
drop in the target’s centrality by focusing only on its local community structure.
This figure also shows that for achieving comparable performance with [already
computationally expensive] global defenders, such as the Betweenness model, we
need to invest in larger defense budgets (note the slow but steady decrease of
the centrality for Betweenness model in Figure 2).

6 Conclusion & Future Direction

In this study, we formalized the problem of vertex protection from a defender’s
perspective. We proposed the CoVerD heuristic that leverages the community
structure of social networks. This algorithm retains the fast computation of local
network perturbations and shows superior performance compared to both local
and global defenders. Despite using only the local community information, our
algorithm achieves a substantially lower closeness centrality than both local and
global perturbation models.

Future Direction. This study is an important step forward in the field of
network protection and privacy to focus on heuristics that are both practical
and efficient in the real-world settings. Two valuable extensions to CoVerD are
(1) investigating the correlation between different community structures and de-
fender’s performance; (2) introducing additional constraints to the defender’s
decision making, such as maintaining certain properties of the network or avoid-
ing the formation of certain motif subgraphs.
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